23948sdkhjf

Nanopartiklar hjälper framtidens katalysatorer

Nu ser Chalmersforskare ljuset i nanotunneln som ska leda fram mot effektivare katalysatorer och mer miljövänlig kemiteknik.

Läs också: Brist på standarder för additiv tillverkning i metall

Med hjälp av en ny sorts nanoreaktor har forskarna lyckats kartlägga den katalytiska prestandan hos enskilda metalliska nanopartiklar. Den nya metoden är viktig för att kunna studera och förbättra kemiska processer. Resultaten publicerades nyligen i den ansedda tidskriften Nature Communications. Katalysatorer underlättar kemiska reaktioner och behövs för att framställa alltifrån bränslen till läkemedel. Katalysatorerna i våra bilar begränsar skadliga utsläpp, men även ny hållbar teknik som bränsleceller bygger på katalytiska processer. I bränsleceller genereras elen med hjälp av en reaktion mellan syre och väte. Katalysatorer kan också bidra till att bryta ner miljögifter, till exempel genom att rena vatten från giftiga kemikalier.

För att designa framtidens effektiva katalysatorer krävs ny grundläggande kunskap om hur man hittar guldkornen i ett virrvarr av katalytiskt aktiva partiklar. Dagens katalysatorer kan liknas vid publikhavet på en fotbollsarena där ett antal åskådare tänder varsin brandfackla. Röken sprider sig snabbt och i rökmolnet är det i princip omöjligt att säga vilka som har facklor och hur kraftigt varje fackla brinner. På samma sätt fungerar de kemiska reaktionerna i en katalysator. Ett myller av miljarder partiklar ingår i den kemiska processen, men det går inte att urskilja vilka individer som gör vad, hur effektiva de är och vilka egenskaper som är optimala.

För att förstå vilka nanopartiklar som fungerar bäst i en katalytisk process är det nödvändigt att dyka in på individnivå. Det är precis vad Chalmersforskarna har gjort – rent bokstavligt. Deras nya nanoreaktor består nämligen av ett femtiotal parallella vätskefyllda nanotunnlar av glas. I varje liten tunnel har de placerat en enda metallisk nanopartikel av guld. Även om guldpartiklarna är lika stora, har de olika katalytiska egenskaper. På vissa partiklar sker den kemiska reaktionen effektivt, medan den på andra sker betydligt mindre optimalt. För att kunna avgöra hur storlek och nanostruktur påverkar katalysen har forskarna alltså låtit dem bekänna färg i enrum.

– Vi skickar in två sorters molekyler som ska reagera med varandra på nanopartiklarnas yta inne i nanotunnlarna. Den ena molekylensorten är självlysande och släcks när den träffat sin partner på nanopartikelns yta och den kemiska reaktionen har ägt rum. På så sätt kan vi se på mängden ljus i tunnlarna hur effektiva de olika nanopartiklarna är i att katalysera den kemiska reaktionen, säger Sune Levin, doktorand vid institutionen för biologi och bioteknik på Chalmers.

Läs också: Samarbete kring Industri 4.0

Han är den vetenskapliga artikelns försteförfattare och har under ledning av de biträdande professorerna Fredrik Westerlund och Christoph Langhammer utfört de flesta experimenten. Den nya nanoreaktorn är ett resultat av ett brett samarbete mellan forskare på flera olika institutioner på Chalmers.

– Effektiv katalys är avgörande både vid tillverkning och nedbrytning av kemikalier. Det kan handla om att tillverka plaster, medicin eller bränsle på bästa sätt, eller att effektiv bryta ner miljögifter, säger Fredrik Westerlund, biträdande professor på institutionen för biologi och bioteknik på Chalmers.

Att utveckla framtidens katalysatormaterial är avgörande för en hållbar framtid och det finns stora samhällsekonomiska vinster att göra.

– Om nanopartiklarna i en katalysator kunde skräddarsys bättre än idag, skulle samhället dra enorm nytta av det. I den kemiska industrin motsvarar till exempel en processeffektivisering med bara några få procent signifikant ökade intäkter, samtidigt som miljöpåverkan skulle minska, säger forskningsprojektets ledare Christoph Langhammer, biträdande professor på institutionen för fysik på Chalmers.

 

 

Kommentera en artikel
Meddela redaktionen
Utvalda artiklar

Sänd till en kollega

0.109